
KVM and CPU feature 
enablement

Eduardo Habkost <ehabkost@redhat.com> 
Developer Conference 2014

mailto:ehabkost@redhat.com


Agenda

• Basic concepts 

• Existing mechanisms and current challenges 

• Current work and future plans

!2



Basics



Introduction: Basics

!4

Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt



Introduction: Basics

!4

command-line, monitor (QMP)

Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt



Introduction:  
Stable guest ABI

• Guest OS should see the “same” machine, even if 
the host system has changed 

• Hard requirement for live migration 

• Soft requirement for non-live migration 

• Host system may change a lot, but VM should 
look the same

!5



x86 CPUID instruction
• Returns information about the running CPU 

• Most information shown on /proc/cpuinfo 

• Feature flags indicating a feature is present 

• Other more complex data 

• e.g.: cache and topology information 

• CPUID data is part of guest ABI

!6



Existing Mechanisms



CPUID handling

!8

HOST CPU

QEMU Guest OS

Kernel



CPUID handling

!8

HOST CPU

QEMU Guest OS

Kernel

GET_SUPPORTED_CPUID

Host 
CPUID 

instruction



CPUID handling

!8

HOST CPU

QEMU Guest OS

CPUID table

SET_CPUID

Kernel

GET_SUPPORTED_CPUID

Host 
CPUID 

instruction



CPUID handling

!8

HOST CPU

QEMU Guest OS

CPUID table

SET_CPUID

Kernel

GET_SUPPORTED_CPUID

Host 
CPUID 

instruction emulate 
CPUID

Guest 
CPUID 

instruction



Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

The Stack

!9

Decision to enable a 
feature (should be) taken 

in the upper layers

Lower layers affect the 
ability to enable a feature



Enabling new features

• We can't silently enable or disable a feature: 

• It breaks guest ABI 

• May unexpectedly prevent migration to other 
(less powerful) hosts

!10



CPU models
• CPU model table, different CPUID data on each entry 

• qemu-system-x86_64 -cpu SandyBridge 

• qemu-system-x86_64 -cpu Haswell 

• Controlling individual features. e.g.: -cpu Nehalem,+aes 

• CPU model entries may change, machine-types keep compatibility 

• qemu-system-x86_64 -machine pc-1.6 -cpu SandyBridge 

• qemu-system-x86_64 -machine pc-1.7 -cpu SandyBridge 

• enforce flag. e.g.: -cpu SandyBridge,enforce 

• Required to ensure predictable results

!11



CPU models

• Special CPU model: -cpu host


• Will enable everything that’s supported by the 
host 

• No stable guest ABI

!12



Management requirements

• Ensuring that the resulting CPUID data is what was 
asked for 

• Knowing which CPU models can be enabled in a 
host 

• Knowing which features are available in a host 

• Knowing to which hosts a VM can be migrated

!13



Issues



Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

Problem: querying CPU 
model information

• libvirt has its own list of CPU 
models 

• libvirt doesn't know QEMU 
CPU models can change over 
time 

• QEMU's fault, there's no good 
API for that (yet!)

!15

CPU model list

QEMU
CPU model list



Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

Problem: no “enforce” mode

• libvirt doesn’t use the 
enforce flag 

• Error reporting not machine-
friendly 

• Most serious issue so far 

• Fix involves implementing 
CPU model and host 
capability APIs

!16

X, Z

-cpu …,+X,+Y,+Z

X!
(no Y)!
(no Z)X, Y



Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

Problem: querying host 
capabilities

• libvirt queries host CPU 
features directly using CPUID 
instruction 

• Ignores KVM capabilities 

• Ignores QEMU capabilities 

• Ignores features that require 
extra CPU capabilities 

• QEMU’s fault, there’s no good 
API for that (yet!)

!17



Solutions



Solutions

• Existing interfaces: CPU-specific options and 
commands 

• -cpu, cpu-add, query-cpu-definitions 

• New interfaces: based on common infrastructure 
(QDev, QOM)

!19



QDev
• QDev = QEMU Device Model 

• QOM = QEMU Object Model 

• QDev devices are QOM objects 

• -device command-line option 

• QMP commands: 

• Adding devices/objects (device_add, object-add) 

• Removing devices/objects (device_del, object-del) 

• Getting/setting devices properties (qom-get, qom-set) 

• Listing objects and object classes (qom-list, qom-list-types)

!20



QDev-based solution
• CPUs are QDev devices (done) 

• CPU devices and its properties visible through QMP 

• feature-words property (done) 

• Query CPU model info 

• Query host capabilities (“host” CPU model) 

• Incomplete: no machine-type-specific data 

• filtered-features property (done) 

• Used to emulate “enforce" mode with better error reporting 

• Not used by libvirt yet

!21



What’s missing (1/2)
• Querying CPU model information without re-running 

QEMU 

• Solution: separate QOM types for each CPU model 

• Exposing machine-type-specific data 

• No defined solution yet 

• Use QOM properties to control all feature flags 

• Changing libvirt to use the new stuff

!22



What’s missing (2/2)

• Long term plans: 

• Deprecate -cpu, cpu-add and use only QDev 
commands 
(-device, device_add) 

• Better interfaces to specify CPU topology (NUMA 
nodes, sockets, cores, threads)

!23



Future

• Reporting capabilities reliably ⇒ smarter 
management systems 

• Usability (automatically choosing good defaults) 

• Smarter VM scheduling 

• May require extending libvirt API

!24



Thanks
Feedback: 

http://devconf.cz/f/34 

!

Additional info / pointers: 

http://wiki.qemu.org/Features/
CPUModels 

ehabkost@redhat.com 

!

Questions?

!25

http://devconf.cz/f/34
http://wiki.qemu.org/Features/CPUModels

