Testing: Difference between revisions
No edit summary |
No edit summary |
||
(47 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
== | == [[Testing/CI|Continuous Integration]] == | ||
Continuous Integration for the project is a distributed affair spread | |||
across a number of public CI services. However our primary CI loop is | |||
run on GitLab with other services filling in gaps in it's coverage. | |||
There is a strong preference for tests to be directly runable with our | |||
existing make infrastructure. The public services to run tests all | |||
offer free tier accounts for FLOSS developers so people can run their | |||
own tests with the same CI setup although generally these need public | |||
repositories. | |||
{{CIStatus}} | |||
== Tests included in the QEMU source == | |||
{| | QEMU includes a test suite comprising: | ||
* unit tests for library code | |||
* [[Features/QTest|QTest]]-based tests, which inject predefined stimuli into the device emulation code. | |||
* [[Testing/QemuIoTests|qemu-iotests]], a regression test suite for the block layer code. | |||
Run '''make check-help''' for a full breakdown of the various sub-checks that can be run. We also have a {{src|path=docs/devel/testing.rst|description=documentation in the source tree}}. | |||
=== <tt>make check</tt> === | |||
The unit tests and QTest-based can be run with "<tt>make check</tt>". Use "<tt>make check-help</tt>" to see a list of other available test targets and parameters (for example, you can use "<tt>make check SPEED=slow V=1</tt>" for a verbose, more thorough test run). These unit tests are used in [[#Continuous Integration|our continuous integration]] systems, based on [[Testing/Travis|Travis]] and [[Testing/CI/Patchew|Patchew]]. | |||
Currently '''make check''' includes the following: | |||
* check-qapi-schema | |||
* check-unit | |||
* check-qtest | |||
* check-decodetree | |||
* check-block | |||
=== <tt>make check-tcg</tt> === | |||
This will attempt to build tests to be run under QEMU for all the enabled guest architectures. You can either supply cross compilers to configure or will attempt to fall-back to precanned docker images with them. | |||
=== qemu-iotests === | |||
<blockquote>''Main article: [[Testing/QemuIoTests]]''</blockquote> | |||
A subset of the qemu-iotests is run from the toplevel build directory with <tt>make check-block</tt>. A full version of the testsuite, taking around half an hour to run, is run with <tt>make check-block SPEED=thorough</tt>. For full control over the iotests, <tt>cd tests/qemu-iotests/</tt> and run <tt>./check --help</tt> for further information. | |||
=== <tt>make docker</tt> === | |||
The build system supports a number of Docker build targets which allow the source tree to be built and tested on a number of different Linux distributions regardless of your host. See [[Testing/DockerBuild]] for more information. | |||
=== device-crash-test script === | |||
The <tt>scripts/device-crash-test</tt> script can be used to run QEMU with multiple | |||
<tt>-machine</tt> and <tt>-device</tt> combinations, to look for obvious crashes machine or | |||
device code. | |||
=== <tt>make check-acceptance</tt> === | |||
This make target runs the tests under <tt>tests/acceptance</tt>, which are higher level functional tests. | |||
These tests are written using the Avocado Testing Framework (which will be installed automatically) in conjunction with a the <tt>avocado_qemu.Test</tt> | |||
class, implemented at <tt>tests/acceptance/avocado_qemu</tt>. | |||
== System emulation == | |||
Various machines are tested for [[Testing/Acceptance#Machines]], see the test source to see which files are downloaded/used. | |||
We also have [[Testing/System Images|a collection of links to disk images]] which can be used to test system emulation. | |||
== User mode emulation == | |||
Here are some links to executables that can be used to test Linux user mode emulation: | |||
* [https://kos.to/linux-user-busyboxes-0.1.tar.xz linux-user-busyboxes-0.1.tar.xz] - Collection of static busybox binaries for almost all Linux target architectures that QEMU simulates. For quick smoke testing of Linux user mode emulation. | |||
It is also possible to [[Testing/LTP|run the Linux Test Project's syscall test suite under the Linux user mode emulation]]. | It is also possible to [[Testing/LTP|run the Linux Test Project's syscall test suite under the Linux user mode emulation]]. | ||
Line 70: | Line 79: | ||
This includes any test to detect memory leaks, reads of uninitialised memory, | This includes any test to detect memory leaks, reads of uninitialised memory, | ||
buffer overflows or other forms of illegal memory access. | buffer overflows or other forms of illegal memory access, that needs QEMU to be run, not merely compiled. | ||
Typically these kind of tests are done using [[Debugging with Valgrind|Valgrind]] on a Linux host. | === Valgrind === | ||
Typically these kind of tests are done using [[Documentation/Debugging with Valgrind|Valgrind]] on a Linux host. | |||
Any of the disk images and executables listed above can be used in such tests. | Any of the disk images and executables listed above can be used in such tests. | ||
# Simple i386 boot test (BIOS only) with Valgrind. | # Simple i386 boot test (BIOS only) with Valgrind. | ||
valgrind --leak-check=full --track-origins=yes --verbose qemu-system-i386 | valgrind --leak-check=full --track-origins=yes --verbose qemu-system-i386 | ||
=== clang UBSan === | |||
The [[https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html clang undefined behavior sanitizer]] can be used to warn about accidental uses of C undefined behavior when QEMU is run. To use it you first need to configure and build QEMU with a clang compiler with the right options: | |||
mkdir build/clang | |||
(cd build/clang && ../../configure --cc=clang --cxx=clang++ \ | |||
'--extra-cflags=-fsanitize=undefined -fno-sanitize=shift-base') | |||
make -C build/clang -j8 | |||
(The -fno-sanitize=shift-base is a workaround for [[https://bugs.llvm.org/show_bug.cgi?id=25552 LLVM bug 25552]] where it did not correctly suppress some shift-related warnings when -fwrapv was in use. If you're using a clang where that bug is fixed, likely 3.9 or better, you can drop it.) | |||
Then when you run the resulting QEMU binaries messages will be printed when UB is invoked: | |||
hw/core/loader.c:67:15: runtime error: null pointer passed as argument 1, which is declared to never be null | |||
See the clang documentation for more information including how to produce stack backtraces on errors. | |||
== Static code analysis == | == Static code analysis == | ||
Line 95: | Line 123: | ||
make | make | ||
=== smatch === | === smatch === | ||
Line 118: | Line 137: | ||
(if not, you must add absolute paths to the example). | (if not, you must add absolute paths to the example). | ||
=== Coverity === | |||
Periodic scans of QEMU are done on the public Coverity Scan service (scan.coverity.com). You can request access on their website, and the administrator will grant it if you are an active participant in QEMU development. | |||
Coverity is confused slightly by multiple definitions of functions with the same name. For this reason, Coverity scans are done as follows: | |||
mkdir cov-int | |||
./configure --audio-drv-list=oss,alsa,sdl,pa --disable-werror | |||
make libqemustub.a | |||
cov-build --dir cov-int make | |||
tar cvf - cov-int | xz > cov-int.tar.xz | |||
Notice that libqemustub.a is ignored by Coverity. This is because some stubs call <tt>abort()</tt> and this causes dead-code false positives. The file cov-int.tar.xz can then be uploaded to [https://scan.coverity.com/projects/378/builds/new Coverity Scan's "Submit build" page]. Customarily, the "project version" is set to the output of <tt>git describe HEAD</tt> and the "description/tag" is set to "commit XYZ" where XYZ is the '''full''' SHA1 hash of the commit. | |||
== Avocado and Avocado-VT == | |||
Avocado is a generic testing framework (used in the <tt>make check-acceptance</tt> tests). | |||
Avocado-VT is the culmination of the old "virt-test" project (and previously known as KVM autotest) with a compatibility layer with to make it run under Avocado. Avocado-VT adds extensive support for Virtualization testing, including first level support for testing QEMU. | |||
To get started with Avocado-VT please visit: | |||
* http://avocado-vt.readthedocs.io | |||
* https://github.com/avocado-framework/avocado-vt | |||
To learn more about Avocado please visit: | |||
* http://avocado-framework.readthedocs.io | |||
* https://github.com/avocado-framework/avocado | |||
After installing it, you can use Avocado-VT tests with your own build of QEMU: | |||
avocado run boot --vt-qemu-bin /path/to/qemu-system-x86_64 | |||
== Testing related meetings == | |||
There's a regular meeting about QEMU testing automation, Avocado's role in that, | |||
CI efforts and related topics. | |||
The meetings will take place every Tuesday from 6:00 AM to 7:00 AM, | |||
(GMT-05:00) Eastern Time - New York. | |||
The meeting ID is 2282383352, and it can be used in any of the following | |||
ways to join the meeting: | |||
* Using your browser: https://bluejeans.com/2282383352 | |||
* Using one of the apps: https://www.bluejeans.com/downloads | |||
* Dialing to one of these numbers: https://www.bluejeans.com/numbers | |||
We have been using a public Trello board to keep track of the ongoing tasks: | |||
* https://trello.com/b/6Qi1pxVn/avocado-qemu | |||
Meeting agenda, notes and meeting minutes are tracked at: | |||
* https://public.etherpad-mozilla.org/p/AvocadoQEMU | |||
== See Also == | |||
* [https://github.com/ehabkost/gdb-qemu gdb-qemu], a set of scripts that look for compatibility bugs by poking at QEMU internal data structures using GDB | |||
The following sub-pages exist: | |||
{{Special:PrefixIndex/Testing/}} |
Latest revision as of 12:16, 12 July 2021
Continuous Integration
Continuous Integration for the project is a distributed affair spread across a number of public CI services. However our primary CI loop is run on GitLab with other services filling in gaps in it's coverage.
There is a strong preference for tests to be directly runable with our existing make infrastructure. The public services to run tests all offer free tier accounts for FLOSS developers so people can run their own tests with the same CI setup although generally these need public repositories.
System | Focus | Status |
---|---|---|
GitLab CI | Majority of CI testing (builds x86 & cross), various check targets | https://gitlab.com/qemu-project/qemu/badges/master/pipeline.svg [1] |
Cirrus CI | FreeBSD, MacOS and Windows MSYS2 compile and test | https://api.cirrus-ci.com/github/qemu/qemu.svg [2] |
Travis | non-x86 hosts, mostly deprecated | [3] |
Coverity | Static analysis | https://scan.coverity.com/projects/378/badge.svg?flat=1&foo=qemu.svg [4] |
Patchew | Apply and test patches as they are sent on the mailing list. | https://patchew.org/QEMU/badge.svg [5] |
Documentation | Build the RST portions of the doc/ subtree | https://readthedocs.org/projects/qemu/badge/?version=latest&foo=qemu.svg [6] |
Tests included in the QEMU source
QEMU includes a test suite comprising:
- unit tests for library code
- QTest-based tests, which inject predefined stimuli into the device emulation code.
- qemu-iotests, a regression test suite for the block layer code.
Run make check-help for a full breakdown of the various sub-checks that can be run. We also have a documentation in the source tree.
make check
The unit tests and QTest-based can be run with "make check". Use "make check-help" to see a list of other available test targets and parameters (for example, you can use "make check SPEED=slow V=1" for a verbose, more thorough test run). These unit tests are used in our continuous integration systems, based on Travis and Patchew.
Currently make check includes the following:
- check-qapi-schema
- check-unit
- check-qtest
- check-decodetree
- check-block
make check-tcg
This will attempt to build tests to be run under QEMU for all the enabled guest architectures. You can either supply cross compilers to configure or will attempt to fall-back to precanned docker images with them.
qemu-iotests
Main article: Testing/QemuIoTests
A subset of the qemu-iotests is run from the toplevel build directory with make check-block. A full version of the testsuite, taking around half an hour to run, is run with make check-block SPEED=thorough. For full control over the iotests, cd tests/qemu-iotests/ and run ./check --help for further information.
make docker
The build system supports a number of Docker build targets which allow the source tree to be built and tested on a number of different Linux distributions regardless of your host. See Testing/DockerBuild for more information.
device-crash-test script
The scripts/device-crash-test script can be used to run QEMU with multiple -machine and -device combinations, to look for obvious crashes machine or device code.
make check-acceptance
This make target runs the tests under tests/acceptance, which are higher level functional tests.
These tests are written using the Avocado Testing Framework (which will be installed automatically) in conjunction with a the avocado_qemu.Test class, implemented at tests/acceptance/avocado_qemu.
System emulation
Various machines are tested for Testing/Acceptance#Machines, see the test source to see which files are downloaded/used.
We also have a collection of links to disk images which can be used to test system emulation.
User mode emulation
Here are some links to executables that can be used to test Linux user mode emulation:
- linux-user-busyboxes-0.1.tar.xz - Collection of static busybox binaries for almost all Linux target architectures that QEMU simulates. For quick smoke testing of Linux user mode emulation.
It is also possible to run the Linux Test Project's syscall test suite under the Linux user mode emulation.
Dynamic code analysis
This includes any test to detect memory leaks, reads of uninitialised memory, buffer overflows or other forms of illegal memory access, that needs QEMU to be run, not merely compiled.
Valgrind
Typically these kind of tests are done using Valgrind on a Linux host. Any of the disk images and executables listed above can be used in such tests.
# Simple i386 boot test (BIOS only) with Valgrind. valgrind --leak-check=full --track-origins=yes --verbose qemu-system-i386
clang UBSan
The [clang undefined behavior sanitizer] can be used to warn about accidental uses of C undefined behavior when QEMU is run. To use it you first need to configure and build QEMU with a clang compiler with the right options:
mkdir build/clang (cd build/clang && ../../configure --cc=clang --cxx=clang++ \ '--extra-cflags=-fsanitize=undefined -fno-sanitize=shift-base') make -C build/clang -j8
(The -fno-sanitize=shift-base is a workaround for [LLVM bug 25552] where it did not correctly suppress some shift-related warnings when -fwrapv was in use. If you're using a clang where that bug is fixed, likely 3.9 or better, you can drop it.)
Then when you run the resulting QEMU binaries messages will be printed when UB is invoked:
hw/core/loader.c:67:15: runtime error: null pointer passed as argument 1, which is declared to never be null
See the clang documentation for more information including how to produce stack backtraces on errors.
Static code analysis
There are a number of tools which analyse C code and try to detect typical errors. None of these tools is perfect, so using different tools with QEMU will detect more bugs. Be prepared to also get lots of false warnings!
ccc-analyzer (clang)
This is an example used on Debian. It needs package clang.
# Start from the root directory with QEMU code. mkdir -f bin/debug/ccc-analyzer cd bin/debug/ccc-analyzer ../../../configure --enable-debug --enable-trace-backend=stderr \ --cc=/usr/share/clang/scan-build/ccc-analyzer --disable-docs make
smatch
Here is a typical example using smatch (from git://repo.or.cz/smatch.git):
# Start from the root directory with QEMU code. mkdir -f bin/debug/smatch cd bin/debug/smatch CHECK="smatch" ../../../configure --enable-debug --cc=cgcc --host-cc=cgcc make
This example expects that smatch and cgcc are installed in your PATH (if not, you must add absolute paths to the example).
Coverity
Periodic scans of QEMU are done on the public Coverity Scan service (scan.coverity.com). You can request access on their website, and the administrator will grant it if you are an active participant in QEMU development.
Coverity is confused slightly by multiple definitions of functions with the same name. For this reason, Coverity scans are done as follows:
mkdir cov-int ./configure --audio-drv-list=oss,alsa,sdl,pa --disable-werror make libqemustub.a cov-build --dir cov-int make tar cvf - cov-int | xz > cov-int.tar.xz
Notice that libqemustub.a is ignored by Coverity. This is because some stubs call abort() and this causes dead-code false positives. The file cov-int.tar.xz can then be uploaded to Coverity Scan's "Submit build" page. Customarily, the "project version" is set to the output of git describe HEAD and the "description/tag" is set to "commit XYZ" where XYZ is the full SHA1 hash of the commit.
Avocado and Avocado-VT
Avocado is a generic testing framework (used in the make check-acceptance tests).
Avocado-VT is the culmination of the old "virt-test" project (and previously known as KVM autotest) with a compatibility layer with to make it run under Avocado. Avocado-VT adds extensive support for Virtualization testing, including first level support for testing QEMU.
To get started with Avocado-VT please visit:
To learn more about Avocado please visit:
After installing it, you can use Avocado-VT tests with your own build of QEMU:
avocado run boot --vt-qemu-bin /path/to/qemu-system-x86_64
There's a regular meeting about QEMU testing automation, Avocado's role in that, CI efforts and related topics.
The meetings will take place every Tuesday from 6:00 AM to 7:00 AM, (GMT-05:00) Eastern Time - New York.
The meeting ID is 2282383352, and it can be used in any of the following ways to join the meeting:
- Using your browser: https://bluejeans.com/2282383352
- Using one of the apps: https://www.bluejeans.com/downloads
- Dialing to one of these numbers: https://www.bluejeans.com/numbers
We have been using a public Trello board to keep track of the ongoing tasks:
Meeting agenda, notes and meeting minutes are tracked at:
See Also
- gdb-qemu, a set of scripts that look for compatibility bugs by poking at QEMU internal data structures using GDB
The following sub-pages exist:
- Testing/Acceptance
- Testing/CCWTestDevice
- Testing/CI
- Testing/CI/CirrusCI
- Testing/CI/GitLabCI
- Testing/CI/Integrated
- Testing/CI/KubernetesRunners
- Testing/CI/Patchew
- Testing/CI/Shippable
- Testing/CI/TransientFailures
- Testing/CI/Travis
- Testing/CI/TroublesomeTests
- Testing/DockerBuild
- Testing/LAVA
- Testing/LTP
- Testing/Linaro/TCWG GNU QEMU Tests
- Testing/QemuIoTests
- Testing/System Images
- Testing/Windows